Title of article :
Bias correction of cross-validation criterion based on Kullback–Leibler information under a general condition
Author/Authors :
Yanagihara، نويسنده , , Hirokazu and Tonda، نويسنده , , Tetsuji and Matsumoto، نويسنده , , Chieko، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2006
Pages :
11
From page :
1965
To page :
1975
Abstract :
This paper deals with the bias correction of the cross-validation (CV) criterion to estimate the predictive Kullback–Leibler information. A bias-corrected CV criterion is proposed by replacing the ordinary maximum likelihood estimator with the maximizer of the adjusted log-likelihood function. The adjustment is just slight and simple, but the improvement of the bias is remarkable. The bias of the ordinary CV criterion is O ( n - 1 ) , but that of the bias-corrected CV criterion is O ( n - 2 ) . We verify that our criterion has smaller bias than the AIC, TIC, EIC and the ordinary CV criterion by numerical experiments.
Keywords :
Bias correction , cross-validation , Predictive Kullback–Leibler information , Model Misspecification , Model selection , Robustness , Weighted log-likelihood function
Journal title :
Journal of Multivariate Analysis
Serial Year :
2006
Journal title :
Journal of Multivariate Analysis
Record number :
1558527
Link To Document :
بازگشت