Title of article :
On the empirical distribution of eigenvalues of large dimensional information-plus-noise-type matrices
Author/Authors :
Dozier، نويسنده , , R. Brent and Silverstein، نويسنده , , Jack W.، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2007
Pages :
17
From page :
678
To page :
694
Abstract :
Let X n be n × N containing i.i.d. complex entries and unit variance (sum of variances of real and imaginary parts equals 1), σ > 0 constant, and R n an n × N random matrix independent of X n . Assume, almost surely, as n → ∞ , the empirical distribution function (e.d.f.) of the eigenvalues of 1 N R n R n * converges in distribution to a nonrandom probability distribution function (p.d.f.), and the ratio n N tends to a positive number. Then it is shown that, almost surely, the e.d.f. of the eigenvalues of 1 N ( R n + σ X n ) ( R n + σ X n ) * converges in distribution. The limit is nonrandom and is characterized in terms of its Stieltjes transform, which satisfies a certain equation.
Keywords :
Stieltjes transform , random matrix , Empirical distribution function of eigenvalues
Journal title :
Journal of Multivariate Analysis
Serial Year :
2007
Journal title :
Journal of Multivariate Analysis
Record number :
1558644
Link To Document :
بازگشت