Title of article :
Innovations algorithm asymptotics for periodically stationary time series with heavy tails
Author/Authors :
Anderson، نويسنده , , Paul L. and Kavalieris، نويسنده , , Laimonis and Meerschaert، نويسنده , , Mark M.، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2008
Pages :
23
From page :
94
To page :
116
Abstract :
The innovations algorithm can be used to obtain parameter estimates for periodically stationary time series models. In this paper we compute the asymptotic distribution for these estimates in the case where the underlying noise sequence has infinite fourth moment but finite second moment. In this case, the sample covariances on which the innovations algorithm are based are known to be asymptotically stable. The asymptotic results developed here are useful to determine which model parameters are significant. In the process, we also compute the asymptotic distributions of least squares estimates of parameters in an autoregressive model.
Keywords :
Periodically stationary , Innovations algorithm , Time series
Journal title :
Journal of Multivariate Analysis
Serial Year :
2008
Journal title :
Journal of Multivariate Analysis
Record number :
1558811
Link To Document :
بازگشت