Title of article :
Sample covariance shrinkage for high dimensional dependent data
Author/Authors :
Sancetta، نويسنده , , Alessio، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2008
Pages :
19
From page :
949
To page :
967
Abstract :
For high dimensional data sets the sample covariance matrix is usually unbiased but noisy if the sample is not large enough. Shrinking the sample covariance towards a constrained, low dimensional estimator can be used to mitigate the sample variability. By doing so, we introduce bias, but reduce variance. In this paper, we give details on feasible optimal shrinkage allowing for time series dependent observations.
Keywords :
Sample covariance matrix , Shrinkage , weak dependence
Journal title :
Journal of Multivariate Analysis
Serial Year :
2008
Journal title :
Journal of Multivariate Analysis
Record number :
1558901
Link To Document :
بازگشت