Title of article :
Monte Carlo tests with nuisance parameters: A general approach to finite-sample inference and nonstandard asymptotics
Author/Authors :
Dufour، نويسنده , , Jean-Marie، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2006
Pages :
35
From page :
443
To page :
477
Abstract :
The technique of Monte Carlo (MC) tests [Dwass (1957, Annals of Mathematical Statistics 28, 181–187); Barnard (1963, Journal of the Royal Statistical Society, Series B 25, 294)] provides a simple method for building exact tests from statistics whose finite sample distribution is intractable but can be simulated (when no nuisance parameter is involved). We extend this method in two ways: first, by allowing for MC tests based on exchangeable possibly discrete test statistics; second, by generalizing it to statistics whose null distribution involves nuisance parameters [maximized MC (MMC) tests]. Simplified asymptotically justified versions of the MMC method are also proposed: these provide a simple way of improving standard asymptotics and dealing with nonstandard asymptotics.
Keywords :
Nonstandard asymptotic distribution , SIMULATED ANNEALING , Asymptotics , bounds , Finite-sample test , Nuisance parameter , Exact test , Maximized Monte Carlo test , Bootstrap , Parametric bootstrap , Monte Carlo test
Journal title :
Journal of Econometrics
Serial Year :
2006
Journal title :
Journal of Econometrics
Record number :
1558978
Link To Document :
بازگشت