Title of article :
Markov-switching model selection using Kullback–Leibler divergence
Author/Authors :
Smith، نويسنده , , Aaron and Naik، نويسنده , , Prasad A. and Tsai، نويسنده , , Chih-Ling، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2006
Abstract :
In Markov-switching regression models, we use Kullback–Leibler (KL) divergence between the true and candidate models to select the number of states and variables simultaneously. Specifically, we derive a new information criterion, Markov switching criterion (MSC), which is an estimate of KL divergence. MSC imposes an appropriate penalty to mitigate the over-retention of states in the Markov chain, and it performs well in Monte Carlo studies with single and multiple states, small and large samples, and low and high noise. We illustrate the usefulness of MSC via applications to the U.S. business cycle and to media advertising.
Keywords :
Advertising effectiveness , Business cycles , EM algorithm , Hidden Markov Models , Markov-switching regression. , information criterion
Journal title :
Journal of Econometrics
Journal title :
Journal of Econometrics