• Title of article

    Variance function estimation in multivariate nonparametric regression with fixed design

  • Author/Authors

    Cai، نويسنده , , T. Tony and Levine، نويسنده , , Michael and Wang، نويسنده , , Lie، نويسنده ,

  • Issue Information
    دوفصلنامه با شماره پیاپی سال 2009
  • Pages
    11
  • From page
    126
  • To page
    136
  • Abstract
    Variance function estimation in multivariate nonparametric regression is considered and the minimax rate of convergence is established in the iid Gaussian case. Our work uses the approach that generalizes the one used in [A. Munk, Bissantz, T. Wagner, G. Freitag, On difference based variance estimation in nonparametric regression when the covariate is high dimensional, J. R. Stat. Soc. B 67 (Part 1) (2005) 19–41] for the constant variance case. As is the case when the number of dimensions d = 1 , and very much contrary to standard thinking, it is often not desirable to base the estimator of the variance function on the residuals from an optimal estimator of the mean. Instead it is desirable to use estimators of the mean with minimal bias. Another important conclusion is that the first order difference based estimator that achieves minimax rate of convergence in the one-dimensional case does not do the same in the high dimensional case. Instead, the optimal order of differences depends on the number of dimensions.
  • Keywords
    primary62G0862G20 , Minimax estimation , Nonparametric regression , Variance estimation
  • Journal title
    Journal of Multivariate Analysis
  • Serial Year
    2009
  • Journal title
    Journal of Multivariate Analysis
  • Record number

    1559101