Title of article :
An efficient nonparametric estimator for models with nonlinear dependence
Author/Authors :
Gagliardini، نويسنده , , Patrick and Gouriéroux، نويسنده , , Christian، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2007
Pages :
41
From page :
189
To page :
229
Abstract :
We provide a convenient econometric framework for the analysis of nonlinear dependence in financial applications. We introduce models with constrained nonparametric dependence, which specify the conditional distribution or the copula in terms of a one-dimensional functional parameter. Our approach is intermediate between standard parametric specifications (which are in general too restrictive) and the fully unrestricted approach (which suffers from the curse of dimensionality). We introduce a nonparametric estimator defined by minimizing a chi-square distance between the constrained densities in the family and an unconstrained kernel estimator of the density. We derive the nonparametric efficiency bound for linear forms and show that the minimum chi-square estimator is nonparametrically efficient for linear forms.
Keywords :
Nonlinear dependence , Copula , efficiency , Nonparametric estimation
Journal title :
Journal of Econometrics
Serial Year :
2007
Journal title :
Journal of Econometrics
Record number :
1559133
Link To Document :
بازگشت