Title of article :
Efficient information theoretic inference for conditional moment restrictions
Author/Authors :
Smith، نويسنده , , Richard J.، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2007
Pages :
31
From page :
430
To page :
460
Abstract :
The generalised method of moments estimator may be substantially biased in finite samples, especially so when there are large numbers of unconditional moment conditions. This paper develops a class of first-order equivalent semi-parametric efficient estimators and tests for conditional moment restrictions models based on a local or kernel-weighted version of the Cressie–Read power divergence family of discrepancies. This approach is similar in spirit to the empirical likelihood methods of Kitamura et al. [2004. Empirical likelihood-based inference in conditional moment restrictions models. Econometrica 72, 1667–1714] and Tripathi and Kitamura [2003. Testing conditional moment restrictions. Annals of Statistics 31, 2059–2095]. These efficient local methods avoid the necessity of explicit estimation of the conditional Jacobian and variance matrices of the conditional moment restrictions and provide empirical conditional probabilities for the observations.
Keywords :
Local Cressie–Read minimum discrepancy , Semi-parametric efficiency , Conditional moment restrictions , GMM
Journal title :
Journal of Econometrics
Serial Year :
2007
Journal title :
Journal of Econometrics
Record number :
1559170
Link To Document :
بازگشت