Title of article :
A semi-parametric Bayesian approach to the instrumental variable problem
Author/Authors :
Conley، نويسنده , , Timothy G. and Hansen، نويسنده , , Christian B. and McCulloch، نويسنده , , Robert E. and Rossi، نويسنده , , Peter E.، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2008
Pages :
30
From page :
276
To page :
305
Abstract :
We develop a Bayesian semi-parametric approach to the instrumental variable problem. We assume linear structural and reduced form equations, but model the error distributions non-parametrically. A Dirichlet process prior is used for the joint distribution of structural and instrumental variable equations errors. Our implementation of the Dirichlet process prior uses a normal distribution as a base model. It can therefore be interpreted as modeling the unknown joint distribution with a mixture of normal distributions with a variable number of mixture components. We demonstrate that this procedure is both feasible and sensible using actual and simulated data. Sampling experiments compare inferences from the non-parametric Bayesian procedure with those based on procedures from the recent literature on weak instrument asymptotics. When errors are non-normal, our procedure is more efficient than standard Bayesian or classical methods.
Keywords :
Instrumental variables , Semi-parametric Bayesian inference , Dirichlet process priors
Journal title :
Journal of Econometrics
Serial Year :
2008
Journal title :
Journal of Econometrics
Record number :
1559410
Link To Document :
بازگشت