Title of article :
A local duality principle for the Baire classes of functions
Author/Authors :
Gonzلlez، نويسنده , , Manuel and Martيnez-Abejَn، نويسنده , , Antonio، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2009
Abstract :
A local dual of a Banach space X is a closed subspace of X ∗ that satisfies the properties that the principle of local reflexivity assigns to X as a subspace of X ∗ ∗ . We show that, for every ordinal 1 ⩽ α ⩽ ω 1 , the spaces B α [ 0 , 1 ] of bounded Baire functions of class α are local dual spaces of the space M [ 0 , 1 ] of all Borel measures. As a consequence, we derive that each annihilator B α [ 0 , 1 ] ⊥ is the kernel of a norm-one projection.
Keywords :
Principle of local reflexivity , Local dual subspace , Baire classes of functions , Space of Borel measures , Bidual of the space of continuous functions
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications