Title of article :
Asymptotical behavior of one class of p-adic singular Fourier integrals
Author/Authors :
Khrennikov، نويسنده , , A.Yu. and Shelkovich، نويسنده , , V.M.، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2009
Pages :
14
From page :
170
To page :
183
Abstract :
We study the asymptotical behavior of the p-adic singular Fourier integrals J π α , m ; φ ( t ) = 〈 f π α ; m ( x ) χ p ( x t ) , φ ( x ) 〉 = F [ f π α ; m φ ] ( t ) , | t | p → ∞ , t ∈ Q p , where f π α ; m ∈ D ′ ( Q p ) is a quasi associated homogeneous distribution (generalized function) of degree π α ( x ) = | x | p α − 1 π 1 ( x ) and order m, π α ( x ) , π 1 ( x ) , and χ p ( x ) are a multiplicative, a normed multiplicative, and an additive characters of the field Q p of p-adic numbers, respectively, φ ∈ D ( Q p ) is a test function, m = 0 , 1 , 2 , … , α ∈ C . If Re α > 0 the constructed asymptotics constitute a p-adic version of the well-known Erdélyi lemma. Theorems which give asymptotic expansions of singular Fourier integrals are the Abelian type theorems. In contrast to the real case, all constructed asymptotics have the stabilization property.
Keywords :
p-Adic singular Fourier integrals , p-Adic quasi associated homogeneous distributions , p-Adic distributional asymptotics
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2009
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1559451
Link To Document :
بازگشت