Title of article :
On the equivalence of McShane and Pettis integrability in non-separable Banach spaces
Author/Authors :
Rodrيguez، نويسنده , , José، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2009
Abstract :
We show that McShane and Pettis integrability coincide for functions f : [ 0 , 1 ] → L 1 ( μ ) , where μ is any finite measure. On the other hand, assuming the Continuum Hypothesis, we prove that there exist a weakly Lindelöf determined Banach space X, a scalarly null (hence Pettis integrable) function h : [ 0 , 1 ] → X and an absolutely summing operator u from X to another Banach space Y such that the composition u ○ h : [ 0 , 1 ] → Y is not Bochner integrable; in particular, h is not McShane integrable.
Keywords :
Property (M) , Absolutely summing operator , McShane integral , Projectional resolution of the identity , Pettis integral , Weakly Lindelِf determined Banach space , Scalarly null function
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications