Title of article :
Convex-transitivity and function spaces
Author/Authors :
Talponen، نويسنده , , Jarno، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2009
Pages :
13
From page :
537
To page :
549
Abstract :
It is shown that if X is a convex-transitive Banach space and 1 ⩽ p < ∞ , then L p ( [ 0 , 1 ] , X ) and L s ∞ ( [ 0 , 1 ] , X ) are convex-transitive. Here L s ∞ ( [ 0 , 1 ] , X ) is the closed linear span of the simple functions in the Bochner space L ∞ ( [ 0 , 1 ] , X ) . If H is an infinite-dimensional Hilbert space and C 0 ( L ) is convex-transitive, then C 0 ( L , H ) is convex-transitive. Some new fairly concrete examples of convex-transitive spaces are provided.
Keywords :
Convex-transitive , Rotation problem , Vector-valued function spaces , transitive , Almost transitive
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2009
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1559536
Link To Document :
بازگشت