• Title of article

    Testing the assumptions behind importance sampling

  • Author/Authors

    Koopman، نويسنده , , Siem Jan and Shephard، نويسنده , , Neil and Creal، نويسنده , , Drew، نويسنده ,

  • Issue Information
    دوفصلنامه با شماره پیاپی سال 2009
  • Pages
    10
  • From page
    2
  • To page
    11
  • Abstract
    Importance sampling is used in many areas of modern econometrics to approximate unsolvable integrals. Its reliable use requires the sampler to possess a variance, for this guarantees a square root speed of convergence and asymptotic normality of the estimator of the integral. However, this assumption is seldom checked. In this paper we use extreme value theory to empirically assess the appropriateness of this assumption. Our main application is the stochastic volatility model, where importance sampling is commonly used for maximum likelihood estimation of the parameters of the model.
  • Keywords
    Extreme value theory , Simulation , stochastic volatility , importance sampling
  • Journal title
    Journal of Econometrics
  • Serial Year
    2009
  • Journal title
    Journal of Econometrics
  • Record number

    1559640