Title of article
Functional equations in a p-adic context
Author/Authors
Alain Escassut ، نويسنده , , Alain and Ojeda، نويسنده , , Jacqueline and Yang، نويسنده , , C.C.، نويسنده ,
Issue Information
دوهفته نامه با شماره پیاپی سال 2009
Pages
10
From page
350
To page
359
Abstract
Recently, in the complex context, several results were obtained concerning functional equations of the form P ( f ) = Q ( g ) where P and Q are polynomials of only two or three terms whose coefficients are small functions: in certain cases the equation does not admit any pair of admissible solutions and in other cases it only admits pairs of solutions that are of a very particular type. Here we consider similar questions when the ground field is a p-adic complete algebraically closed field of characteristic 0 and we derive results that are often analogous. For instance, if f n + a 1 f n − m + b 1 = c ( g − n + a 2 g n − m + b 2 ) , with a i , b j small functions with regard to f, g and a 2 b 2 non-identically 0, then c = b 1 b 2 and f = h g with h m = a 1 a 2 . However, contrary to the complex context, here results apply not only to meromorphic functions defined in the whole field but also to unbounded meromorphic functions defined inside an open disc. The main tool is the p-adic Nevanlinna theory.
Keywords
Ultrametric , Functional equations , Nevanlinnaיs theory
Journal title
Journal of Mathematical Analysis and Applications
Serial Year
2009
Journal title
Journal of Mathematical Analysis and Applications
Record number
1559645
Link To Document