Title of article :
Perron–Frobenius operators and representations of the Cuntz–Krieger algebras for infinite matrices
Author/Authors :
Gonçalves، نويسنده , , Daniel and Royer، نويسنده , , Danilo، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2009
Pages :
8
From page :
811
To page :
818
Abstract :
In this paper we extend the work of Kawamura, see [K. Kawamura, The Perron–Frobenius operators, invariant measures and representations of the Cuntz–Krieger algebras, J. Math. Phys. 46 (2005)], for Cuntz–Krieger algebras O A for infinite matrices A. We generalize the definition of branching systems, prove their existence for any given matrix A and show how they induce some very concrete representations of O A . We use these representations to describe the Perron–Frobenius operator, associated to a nonsingular transformation, as an infinite sum and under some hypothesis we find a matrix representation for the operator. We finish the paper with a few examples.
Keywords :
Perron–Frobenius operators , Cuntz–Krieger algebras for infinite matrices
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2009
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1559727
Link To Document :
بازگشت