Title of article :
Finite sample inference for quantile regression models
Author/Authors :
Victor Chernozhukov، نويسنده , , Victor and Hansen، نويسنده , , Christian and Jansson، نويسنده , , Michael، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2009
Abstract :
Under minimal assumptions, finite sample confidence bands for quantile regression models can be constructed. These confidence bands are based on the “conditional pivotal property” of estimating equations that quantile regression methods solve and provide valid finite sample inference for linear and nonlinear quantile models with endogenous or exogenous covariates. The confidence regions can be computed using Markov Chain Monte Carlo (MCMC) methods. We illustrate the finite sample procedure through two empirical examples: estimating a heterogeneous demand elasticity and estimating heterogeneous returns to schooling. We find pronounced differences between asymptotic and finite sample confidence regions in cases where the usual asymptotics are suspect.
Keywords :
Extremal quantile regression , Partial identification , weak identification , Instrumental quantile regression
Journal title :
Journal of Econometrics
Journal title :
Journal of Econometrics