Title of article :
Tests with correct size when instruments can be arbitrarily weak
Author/Authors :
Moreira، نويسنده , , Marcelo J.، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2009
Abstract :
This paper applies classical exponential-family statistical theory to develop a unifying framework for testing structural parameters in the simultaneous equations model under the assumption of normal errors with known reduced-form variance matrix. The results can be divided into the limited-information and full-information categories. In the limited-information model, it is possible to characterize the entire class of similar tests in a model with only one endogenous explanatory variable. In the full-information framework, this paper proposes a family of similar tests for subsets of endogenous variables’ coefficients. For both limited- and full-information models, there exist power upper bounds for unbiased tests. When the model is just-identified, the Anderson–Rubin, score, and (pseudo) conditional likelihood ratio tests are optimal. When the model is over-identified, the (pseudo) conditional likelihood ratio test has power close to the power envelope when identification is strong.
Keywords :
Pre-testing , Instrumental variables regression , Curved exponential family , weak instruments
Journal title :
Journal of Econometrics
Journal title :
Journal of Econometrics