Title of article :
Harnackʹs inequality for -harmonic functions with unbounded exponent p
Author/Authors :
Harjulehto، نويسنده , , Petteri and Hنstِ، نويسنده , , Peter and Latvala، نويسنده , , Visa، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2009
Pages :
15
From page :
345
To page :
359
Abstract :
We study properties of the function u = lim λ → ∞ u λ , where u λ is the solution of the min { p ( ⋅ ) , λ } -Laplacian Dirichlet problem with bounded Sobolev boundary function. Here p : Ω → ( n , ∞ ] is a variable exponent such that 1 / p is Lipschitz continuous. We derive Bloch-type estimates and using them we prove Harnackʹs inequality in cases of unbounded but finite exponent.
Keywords :
Caccioppoli estimate , SOLUTION , Dirichlet energy , Variable exponent , Laplace equation , Non-standard growth
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2009
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1559790
Link To Document :
بازگشت