Title of article :
Density estimation for nonlinear parametric models with conditional heteroscedasticity
Author/Authors :
Zhao، نويسنده , , Zhibiao، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2010
Pages :
12
From page :
71
To page :
82
Abstract :
This article studies density and parameter estimation problems for nonlinear parametric models with conditional heteroscedasticity. We propose a simple density estimate that is particularly useful for studying the stationary density of nonlinear time series models. Under a general dependence structure, we establish the root n consistency of the proposed density estimate. For parameter estimation, a Bahadur type representation is obtained for the conditional maximum likelihood estimate. The parameter estimate is shown to be asymptotically efficient in the sense that its limiting variance attains the Cramér–Rao lower bound. The performance of our density estimate is studied by simulations.
Keywords :
Stochastic regression , Bahadur representation , Conditional heteroscedasticity , Density estimation , Fisher Information , Nonlinear time series , Nonparametric kernel density , Stationary density
Journal title :
Journal of Econometrics
Serial Year :
2010
Journal title :
Journal of Econometrics
Record number :
1559846
Link To Document :
بازگشت