Title of article :
Indirect inference for dynamic panel models
Author/Authors :
Gouriéroux، نويسنده , , Christian and Phillips، نويسنده , , Peter C.B. and Yu، نويسنده , , Jun، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2010
Pages :
10
From page :
68
To page :
77
Abstract :
Maximum likelihood (ML) estimation of the autoregressive parameter of a dynamic panel data model with fixed effects is inconsistent under fixed time series sample size and large cross section sample size asymptotics. This paper proposes a general, computationally inexpensive method of bias reduction that is based on indirect inference, shows unbiasedness and analyzes efficiency. Monte Carlo studies show that our procedure achieves substantial bias reductions with only mild increases in variance, thereby substantially reducing root mean square errors. The method is compared with certain consistent estimators and is shown to have superior finite sample properties to the generalized method of moment (GMM) and the bias-corrected ML estimator.
Keywords :
bias reduction , fixed effects , Dynamic panel , indirect inference , Autoregression
Journal title :
Journal of Econometrics
Serial Year :
2010
Journal title :
Journal of Econometrics
Record number :
1559932
Link To Document :
بازگشت