Title of article :
The LIML estimator has finite moments!
Author/Authors :
Anderson، نويسنده , , T.W.، نويسنده ,
Issue Information :
دوفصلنامه با شماره پیاپی سال 2010
Abstract :
The Limited Information Maximum Likelihood estimator of the vector of coefficients of a structural equation in a simultaneous equation model is the vector that defines the linear combination maximizing the effect variance relative to the error variance. If this “eigenvector” solution is normalized by setting a designated coefficient equal to 1, the second-order moment of the estimator may be unbounded. However, the second-order moment is finite if the normalization sets the sample error variance of the linear combination equal to 1.
Keywords :
Limited information maximum likelihood , Bounded moments , normalization
Journal title :
Journal of Econometrics
Journal title :
Journal of Econometrics