Title of article :
On 2-local isometries on continuous vector-valued function spaces
Author/Authors :
Al-Halees، نويسنده , , Hasan and Fleming، نويسنده , , Richard J.، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2009
Pages :
8
From page :
70
To page :
77
Abstract :
A (not necessarily linear) mapping Φ from a Banach space X to a Banach space Y is said to be a 2-local isometry if for any pair x , y of elements of X, there is a surjective linear isometry T : X → Y such that T x = Φ x and T y = Φ y . We show that under certain conditions on locally compact Hausdorff spaces Q, K and a Banach space E, every 2-local isometry on C 0 ( Q , E ) to C 0 ( K , E ) is linear and surjective. We also show that every 2-local isometry on ℓ p is linear and surjective for 1 ⩽ p < ∞ , p ≠ 2 , but this fails for the Hilbert space ℓ 2 .
Keywords :
isometry , Iso-reflexive , Local isometry
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2009
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1560044
Link To Document :
بازگشت