Title of article :
Compact composition operators on and Hardy–Orlicz spaces
Author/Authors :
Lefèvre، نويسنده , , Pascal and Li، نويسنده , , Daniel and Queffélec، نويسنده , , Hervé and Rodrيguez-Piazza، نويسنده , , Luis، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2009
Pages :
12
From page :
360
To page :
371
Abstract :
We compare the compactness of composition operators on H 2 and on Orlicz–Hardy spaces H Ψ . We show that, for every 1 ⩽ p < ∞ , there exists an Orlicz function Ψ such that H p + ε ⊆ H Ψ ⊆ H p for every ε > 0 , and a composition operator C ϕ which is compact on H p and on H p + ε , but not on H Ψ . We also show that, for every Orlicz function Ψ which does not satisfy condition Δ 2 , there is a composition operator C ϕ which is compact on H 2 but not on H Ψ , and that, when Ψ grows fast enough, there is a function ϕ such that C ϕ is in all Schatten classes S p , for p > 0 , but is not compact on H Ψ .
Keywords :
composition operator , Carleson function , Hardy spaces , Schatten Classes , Carleson measure , Hardy–Orlicz spaces
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2009
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1560102
Link To Document :
بازگشت