Title of article :
The space of scalarly integrable functions for a Fréchet-space-valued measure
Author/Authors :
del Campo، نويسنده , , R. and Ricker، نويسنده , , W.J.، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2009
Pages :
7
From page :
641
To page :
647
Abstract :
The space L w 1 ( ν ) of all scalarly integrable functions with respect to a Fréchet-space-valued vector measure ν is shown to be a complete Fréchet lattice with the σ-Fatou property which contains the (traditional) space L 1 ( ν ) , of all ν-integrable functions. Indeed, L 1 ( ν ) is the σ-order continuous part of L w 1 ( ν ) . Every Fréchet lattice with the σ-Fatou property and containing a weak unit in its σ-order continuous part is Fréchet lattice isomorphic to a space of the kind L w 1 ( ν ) .
Keywords :
Fréchet space (lattice) , Fatou property , Vector measure , Scalarly integrable function , Lebesgue topology
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2009
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1560159
Link To Document :
بازگشت