Title of article :
Stabilized multiscale finite element method for the stationary Navier–Stokes equations
Author/Authors :
Ge، نويسنده , , Zhihao and Feng، نويسنده , , Minfu and He، نويسنده , , Yinnian، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2009
Pages :
10
From page :
708
To page :
717
Abstract :
In the paper, a stabilized multiscale finite element method for the stationary incompressible Navier–Stokes equations is considered. The method is a Petrov–Galerkin approach based on the multiscale enrichment of the standard polynomial space enriched with the unusual bubble functions which no longer vanish on every element boundary for the velocity space. The stability of the P 1 – P 0 triangular element (or the Q 1 – P 0 quadrilateral element) is established. And the optimal error estimates of the stabilized multiscale finite element method for the stationary Navier–Stokes equations are obtained.
Keywords :
Petrov–Galerkin approach , Multiscale finite element method , Stabilized
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2009
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1560173
Link To Document :
بازگشت