Title of article :
Tighter bounds in triangular systems
Author/Authors :
Jun، نويسنده , , Sung Jae and Pinkse، نويسنده , , Joris and Xu، نويسنده , , Haiqing، نويسنده ,
Pages :
7
From page :
122
To page :
128
Abstract :
We study a nonparametric triangular system with (potentially discrete) endogenous regressors and nonseparable errors. Like in other work in this area, the parameter of interest is the structural function evaluated at particular values. We impose a global exclusion and exogeneity condition, in contrast to Chesher (2005), but develop a rank condition which is weaker than Chesher’s. The alternative rank condition can be satisfied for binary endogenous regressors, and it often leads to an identified interval tighter than Chesher (2005)’s minimum length interval. We illustrate the potential of the new rank condition using the Angrist and Krueger (1991) data.
Keywords :
Partial identification , Rank conditions , Instrumental variables , Weak monotonicity , Control variables , Nonparametric triangular systems
Journal title :
Astroparticle Physics
Record number :
1560180
Link To Document :
بازگشت