Author/Authors :
Pan، نويسنده , , Shaohua and Chen، نويسنده , , Jein-Shan، نويسنده ,
Abstract :
In this paper, we extend the one-parametric class of merit functions proposed by Kanzow and Kleinmichel [C. Kanzow, H. Kleinmichel, A new class of semismooth Newton-type methods for nonlinear complementarity problems, Comput. Optim. Appl. 11 (1998) 227–251] for the nonnegative orthant complementarity problem to the general symmetric cone complementarity problem (SCCP). We show that the class of merit functions is continuously differentiable everywhere and has a globally Lipschitz continuous gradient mapping. From this, we particularly obtain the smoothness of the Fischer–Burmeister merit function associated with symmetric cones and the Lipschitz continuity of its gradient. In addition, we also consider a regularized formulation for the class of merit functions which is actually an extension of one of the NCP function classes studied by [C. Kanzow, Y. Yamashita, M. Fukushima, New NCP functions and their properties, J. Optim. Theory Appl. 97 (1997) 115–135] to the SCCP. By exploiting the Cartesian P-properties for a nonlinear transformation, we show that the class of regularized merit functions provides a global error bound for the solution of the SCCP, and moreover, has bounded level sets under a rather weak condition which can be satisfied by the monotone SCCP with a strictly feasible point or the SCCP with the joint Cartesian R 02 -property. All of these results generalize some recent important works in [J.-S. Chen, P. Tseng, An unconstrained smooth minimization reformulation of the second-order cone complementarity problem, Math. Program. 104 (2005) 293–327; C.-K. Sim, J. Sun, D. Ralph, A note on the Lipschitz continuity of the gradient of the squared norm of the matrix-valued Fischer–Burmeister function, Math. Program. 107 (2006) 547–553; P. Tseng, Merit function for semidefinite complementarity problems, Math. Program. 83 (1998) 159–185] under a unified framework.
Keywords :
Merit function , Jordan algebra , Symmetric cone complementarity problem , Smoothness , Lipschitz continuity , Cartesian P-properties