Title of article :
Metrizability of spaces of holomorphic functions
Author/Authors :
Lَpez-Salazar، نويسنده , , Jerَnimo، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2009
Abstract :
In this paper we prove that if U is an open subset of a metrizable locally convex space E of infinite dimension, the space H ( U ) of all holomorphic functions on U, endowed with the Nachbin–Coeuré topology τ δ , is not metrizable. Our result can be applied to get that, for all usual topologies, H ( U ) is metrizable if and only if E has finite dimension.
Keywords :
Limited set , Nachbin–Coeuré topology , Bounding set , holomorphic function
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications