Title of article :
Cubically convergent methods for selecting the regularization parameters in linear inverse problems
Author/Authors :
Zou، نويسنده , , Yongkui and Wang، نويسنده , , Linjun and Zhang، نويسنده , , Ran، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2009
Abstract :
We present three cubically convergent methods for choosing the regularization parameters in linear inverse problems. The detailed algorithms are given and the convergence rates are estimated. Our basic tools are Tikhonov regularization and Morozovʹs discrepancy principle. We prove that, in comparison with the standard Newton method, the computational costs for our cubically convergent methods are nearly the same, but the number of iteration steps is even less. Numerical experiments for an elliptic boundary value problem illustrate the efficiency of the proposed algorithms.
Keywords :
Inverse problem , Morozovיs discrepancy principle , Regularization parameters , Iterative method , Cubic convergence
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications