Title of article :
Strichartz type estimates for fractional heat equations
Author/Authors :
Zhai، نويسنده , , Zhichun، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2009
Pages :
17
From page :
642
To page :
658
Abstract :
We obtain Strichartz estimates for the fractional heat equations by using both the abstract Strichartz estimates of Keel–Tao and the Hardy–Littlewood–Sobolev inequality. We also prove an endpoint homogeneous Strichartz estimate via replacing L x ∞ ( R n ) by BMO x ( R n ) and a parabolic homogeneous Strichartz estimate. Meanwhile, we generalize the Strichartz estimates by replacing the Lebesgue spaces with either Besov spaces or Sobolev spaces. Moreover, we establish the Strichartz estimates for the fractional heat equations with a time dependent potential of an appropriate integrability. As an application, we prove the global existence and uniqueness of regular solutions in spatial variables for the generalized Navier–Stokes system with L r ( R n ) data.
Keywords :
Strichartz estimates , Time dependent potentials , Fractional heat equations , Navier–Stokes equations
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2009
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1560350
Link To Document :
بازگشت