Title of article :
Existence, uniqueness and asymptotic behavior of solutions for a singular parabolic equation
Author/Authors :
Xia، نويسنده , , Li and Yao، نويسنده , , Zhengʹan، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2009
Pages :
7
From page :
182
To page :
188
Abstract :
In this paper, we are concerned with a singular parabolic equation ∂ v ∂ t − Δ v = f ( x , t ) − μ | ∇ v | 2 v in a smooth bounded domain Ω ⊂ R N subject to zero Dirichlet boundary condition and initial condition φ ⩾ 0 . Under the assumptions on μ, φ and f ( x , t ) , some existence and uniqueness results are obtained by applying parabolic regularization method and the sub-supersolutions method. We also discuss the asymptotic behaviors of solutions in the sense of L 2 ( 0 , T ; W 0 1 , 2 ( Ω ) ) and L ∞ ( 0 , T ; L 2 ( Ω ) ) norms as μ → 0 or μ → ∞ . As a byproduct we obtain the existence of solutions for some problems which blow up on the boundary.
Keywords :
existence , asymptotic behavior , Singular equation , Blowup , Uniqueness
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2009
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1560428
Link To Document :
بازگشت