Title of article :
Global Hِlder continuity of weak solutions to quasilinear divergence form elliptic equations
Author/Authors :
Palagachev، نويسنده , , Dian K.، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2009
Pages :
9
From page :
159
To page :
167
Abstract :
We derive global Hölder regularity for the W 0 1 , 2 ( Ω ) -weak solutions to the quasilinear, uniformly elliptic equation div ( a i j ( x , u ) D j u + a i ( x , u ) ) + a ( x , u , D u ) = 0 over a C 1 -smooth domain Ω ⊂ R n , n ⩾ 2 . The nonlinear terms are all of Carathéodory type with coefficients a i j ( x , u ) belonging to the class VMO of functions with vanishing mean oscillation with respect to x, while a i ( x , u ) and a ( x , u , D u ) exhibit controlled growths with respect to u and the gradient Du.
Keywords :
VMO , quasilinear elliptic equations , Weak solution , Regularity , A priori estimates
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2009
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1560472
Link To Document :
بازگشت