Title of article :
On the algebraic structure of Abelian integrals for a kind of perturbed cubic Hamiltonian systems
Author/Authors :
Zhou، نويسنده , , Xin and Li، نويسنده , , Cuiping، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2009
Pages :
7
From page :
209
To page :
215
Abstract :
The finite generators of Abelian integral I ( h ) = ∮ Γ h f ( x , y ) d x − g ( x , y ) d y are obtained, where Γ h is a family of closed ovals defined by H ( x , y ) = x 2 + y 2 + a x 4 + b x 2 y 2 + c y 4 = h , h ∈ Σ , a c ( 4 a c − b 2 ) ≠ 0 , Σ = ( 0 , h 1 ) is the open interval on which Γ h is defined, f ( x , y ) , g ( x , y ) are real polynomials in x and y with degree 2 n + 1 ( n ⩾ 2 ). And an upper bound of the number of zeros of Abelian integral I ( h ) is given by its algebraic structure for a special case a > 0 , b = 0 , c = 1 .
Keywords :
Abelian integral , Weakened Hilbertיs 16th problem , Picard–Fuchs equation , Hamiltonian system
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2009
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1560476
Link To Document :
بازگشت