Title of article :
Module homomorphisms and multipliers on locally compact quantum groups
Author/Authors :
Ramezanpour، نويسنده , , M. and Vishki، نويسنده , , H.R.E.، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2009
Pages :
7
From page :
581
To page :
587
Abstract :
For a Banach algebra A with a bounded approximate identity, we investigate the A-module homomorphisms of certain introverted subspaces of A ∗ , and show that all A-module homomorphisms of A ∗ are normal if and only if A is an ideal of A ∗ ∗ . We obtain some characterizations of compactness and discreteness for a locally compact quantum group G . Furthermore, in the co-amenable case we prove that the multiplier algebra of L 1 ( G ) can be identified with M ( G ) . As a consequence, we prove that G is compact if and only if LUC ( G ) = WAP ( G ) and M ( G ) ≅ Z ( LUC ( G ) ∗ ) ; which partially answer a problem raised by Volker Runde.
Keywords :
Locally compact quantum group , Module homomorphism , Wendelיs theorem , Hopf–von Neumann algebra , Multiplier , Topological centre
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2009
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1560508
Link To Document :
بازگشت