Title of article :
Pointwise universal trigonometric series
Author/Authors :
Shkarin، نويسنده , , S.، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2009
Pages :
5
From page :
754
To page :
758
Abstract :
A series S a = ∑ n = − ∞ ∞ a n z n is called a pointwise universal trigonometric series if for any f ∈ C ( T ) , there exists a strictly increasing sequence { n k } k ∈ N of positive integers such that ∑ j = − n k n k a j z j converges to f ( z ) pointwise on T . We find growth conditions on coefficients allowing and forbidding the existence of a pointwise universal trigonometric series. For instance, if | a n | = O ( | n | ln − 1 − ε | n | ) as | n | → ∞ for some ε > 0 , then the series S a cannot be pointwise universal. On the other hand, there exists a pointwise universal trigonometric series S a with | a n | = O ( | n | ln − 1 | n | ) as | n | → ∞ .
Keywords :
Universal series , Trigonometric series , Power series
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2009
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1560598
Link To Document :
بازگشت