Title of article :
Solutions for the fractional Landau–Lifshitz equation
Author/Authors :
Guo، نويسنده , , Boling and Zeng، نويسنده , , Ming، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2010
Abstract :
This article considers the dynamic equation of a reduced model for thin-film micromagnetics deduced by A. DeSimone, R.V. Kohn and F. Otto in [A. DeSimone, R.V. Kohn, F. Otto, A reduced theory for thin-film micromagnetics, Comm. Pure Appl. Math. 55 (2002) 1–53]. To derive the existence of weak solutions under periodical boundary condition, the authors first prove the existence of smooth solutions for the approximating equation, then prove the convergence of the viscosity solution when the viscosity term vanishes, which implies the existence of solutions for the original equation.
Keywords :
Landau–Lifshitz equation , Fractional derivative , Fourier series , Viscosity vanishing method
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications