Title of article :
High dimensional random sections of isotropic convex bodies
Author/Authors :
Alonso-Gutiérrez، نويسنده , , David and Bastero، نويسنده , , Jesْs and Bernués، نويسنده , , Julio and Paouris، نويسنده , , Grigoris، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2010
Abstract :
We study two properties of random high dimensional sections of convex bodies. In the first part of the paper we estimate the central section function | K ∩ F ⊥ | n − k 1 / k for random F ∈ G n , k and K ⊂ R n a centrally symmetric isotropic convex body. This partially answers a question raised by V.D. Milman and A. Pajor (see [V.D. Milman, A. Pajor, Isotropic positions and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space, in: Lecture Notes in Math., vol. 1376, Springer, 1989, p. 88]). In the second part we show that every symmetric convex body has random high dimensional sections F ∈ G n , k with outer volume ratio bounded by ovr ( K ∩ F ) ⩽ C n n − k log ( 1 + n n − k ) .
Keywords :
Isotropic convex bodies , Section function , M-position
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications