Title of article :
Asymptotic uncorrelation for Mexican needlets
Author/Authors :
Mayeli، نويسنده , , Azita، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2010
Pages :
9
From page :
336
To page :
344
Abstract :
We recall Mexican needlets from [D. Geller, A. Mayeli, Continuous wavelets on compact manifolds, Math. Z. 262 (4) (2009) 895–927; D. Geller, A. Mayeli, Nearly tight frames and space-frequency analysis on compact manifolds, Math. Z. 263 (2) (2009) 234–264]. We derive an estimate for certain types of Legendre series, which we apply to the statistical properties of Mexican needlets. More precisely, we shall show that, under isotropy assumption, the Mexican needlet coefficients of a random field on the sphere are asymptotically uncorrelated, as the frequency parameter goes to infinity. This property is important in the analysis of spherical random fields, in particular in connection to the analysis of Cosmic Microwave Background (CMB) radiation data.
Keywords :
Spherical Laplacian operator , wavelets , Mexican needlets , Second-order isotropy , Legendre (Gegenbauer) polynomials , spherical harmonics , Angular power spectrum
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2010
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1560736
Link To Document :
بازگشت