• Title of article

    Malliavin calculus and decoupling inequalities in Banach spaces

  • Author/Authors

    Maas ، نويسنده , , Jan، نويسنده ,

  • Issue Information
    دوهفته نامه با شماره پیاپی سال 2010
  • Pages
    16
  • From page
    383
  • To page
    398
  • Abstract
    We develop a theory of Malliavin calculus for Banach space-valued random variables. Using radonifying operators instead of symmetric tensor products we extend the Wiener–Itô isometry to Banach spaces. In the white noise case we obtain two sided L p -estimates for multiple stochastic integrals in arbitrary Banach spaces. It is shown that the Malliavin derivative is bounded on vector-valued Wiener–Itô chaoses. Our main tools are decoupling inequalities for vector-valued random variables. In the opposite direction we use Meyerʹs inequalities to give a new proof of a decoupling result for Gaussian chaoses in UMD Banach spaces.
  • Keywords
    Meyerיs multiplier theorem , Meyerיs inequalities , Malliavin Calculus , Decoupling inequalities , Wiener–Itô decomposition , Gaussian chaos , Multiple stochastic integrals
  • Journal title
    Journal of Mathematical Analysis and Applications
  • Serial Year
    2010
  • Journal title
    Journal of Mathematical Analysis and Applications
  • Record number

    1560740