Title of article
Malliavin calculus and decoupling inequalities in Banach spaces
Author/Authors
Maas ، نويسنده , , Jan، نويسنده ,
Issue Information
دوهفته نامه با شماره پیاپی سال 2010
Pages
16
From page
383
To page
398
Abstract
We develop a theory of Malliavin calculus for Banach space-valued random variables. Using radonifying operators instead of symmetric tensor products we extend the Wiener–Itô isometry to Banach spaces. In the white noise case we obtain two sided L p -estimates for multiple stochastic integrals in arbitrary Banach spaces. It is shown that the Malliavin derivative is bounded on vector-valued Wiener–Itô chaoses. Our main tools are decoupling inequalities for vector-valued random variables. In the opposite direction we use Meyerʹs inequalities to give a new proof of a decoupling result for Gaussian chaoses in UMD Banach spaces.
Keywords
Meyerיs multiplier theorem , Meyerיs inequalities , Malliavin Calculus , Decoupling inequalities , Wiener–Itô decomposition , Gaussian chaos , Multiple stochastic integrals
Journal title
Journal of Mathematical Analysis and Applications
Serial Year
2010
Journal title
Journal of Mathematical Analysis and Applications
Record number
1560740
Link To Document