Title of article :
Pointwise Lipschitz functions on metric spaces
Author/Authors :
Durand-Cartagena، نويسنده , , E. and Jaramillo، نويسنده , , J.A.، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2010
Pages :
24
From page :
525
To page :
548
Abstract :
For a metric space X, we study the space D ∞ ( X ) of bounded functions on X whose pointwise Lipschitz constant is uniformly bounded. D ∞ ( X ) is compared with the space LIP ∞ ( X ) of bounded Lipschitz functions on X, in terms of different properties regarding the geometry of X. We also obtain a Banach–Stone theorem in this context. In the case of a metric measure space, we also compare D ∞ ( X ) with the Newtonian–Sobolev space N 1 , ∞ ( X ) . In particular, if X supports a doubling measure and satisfies a local Poincaré inequality, we obtain that D ∞ ( X ) = N 1 , ∞ ( X ) .
Keywords :
Banach–Stone theorem , Newtonian–Sobolev spaces , Metric measure spaces , Lipschitz functions
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2010
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1560752
Link To Document :
بازگشت