Title of article :
Reiterʹs properties and for locally compact quantum groups
Author/Authors :
Daws، نويسنده , , Matthew and Runde، نويسنده , , Volker، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2010
Pages :
14
From page :
352
To page :
365
Abstract :
A locally compact group G is amenable if and only if it has Reiterʹs property ( P p ) for p = 1 or, equivalently, all p ∈ [ 1 , ∞ ) , i.e., there is a net ( m α ) α of non-negative norm one functions in L p ( G ) such that lim α sup x ∈ K ‖ L x − 1 m α − m α ‖ p = 0 for each compact subset K ⊂ G ( L x − 1 m α stands for the left translate of m α by x −1 ). We extend the definitions of properties ( P 1 ) and ( P 2 ) from locally compact groups to locally compact quantum groups in the sense of J. Kustermans and S. Vaes. We show that a locally compact quantum group has ( P 1 ) if and only if it is amenable and that it has ( P 2 ) if and only if its dual quantum group is co-amenable. As a consequence, ( P 2 ) implies ( P 1 ) .
Keywords :
amenability , Co-amenability , Locally compact quantum groups , Reiterיs property ( P 2 ) , Operator spaces , Reiterיs property ( P 1 ) , Leptinיs theorem
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2010
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1560799
Link To Document :
بازگشت