Title of article :
A halfspace theorem for mean curvature surfaces in
Author/Authors :
Nelli، نويسنده , , Barbara and Sa Earp، نويسنده , , Ricardo، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2010
Abstract :
We prove a vertical halfspace theorem for surfaces with constant mean curvature H = 1 2 , properly immersed in the product space H 2 × R , where H 2 is the hyperbolic plane and R is the set of real numbers. The proof is a geometric application of the classical maximum principle for second order elliptic PDE, using the family of noncompact rotational H = 1 2 surfaces in H 2 × R .
Keywords :
Maximum principle , Vertical end , Halfspace theorem , Second order elliptic equation , Mean Curvature
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications