Title of article :
Numerical ranges of the powers of an operator
Author/Authors :
Choi، نويسنده , , Man-Duen and Li، نويسنده , , Chi-Kwong، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2010
Pages :
9
From page :
458
To page :
466
Abstract :
The numerical range W ( A ) of a bounded linear operator A on a Hilbert space is the collection of complex numbers of the form ( A v , v ) with v ranging over the unit vectors in the Hilbert space. In terms of the location of W ( A ) , inclusion regions are obtained for W ( A k ) for positive integers k, and also for negative integers k if A − 1 exists. Related inequalities on the numerical radius w ( A ) = sup { | μ | : μ ∈ W ( A ) } and the Crawford number c ( A ) = inf { | μ | : μ ∈ W ( A ) } are deduced.
Keywords :
Numerical range , Numerical radius , Crawford number , Hilbert space , Bounded linear operator
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2010
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1560873
Link To Document :
بازگشت