Title of article :
Spectral isometries onto algebras having a separating family of finite-dimensional irreducible representations
Author/Authors :
CONSTANTIN COSTARA، نويسنده , , Constantin and Repov?، نويسنده , , Du?an، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2010
Abstract :
We prove that if A is a complex, unital semisimple Banach algebra and B is a complex, unital Banach algebra having a separating family of finite-dimensional irreducible representations, then any unital linear operator from A onto B which preserves the spectral radius is a Jordan morphism.
Keywords :
Jordan isomorphism , Finite-dimensional irreducible representation , Spectral isometry , Preserver
Journal title :
Journal of Mathematical Analysis and Applications
Journal title :
Journal of Mathematical Analysis and Applications