Title of article :
Global asymptotic properties of an SEIRS model with multiple infectious stages
Author/Authors :
Melesse، نويسنده , , Dessalegn Y. and Gumel، نويسنده , , Abba B.، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2010
Pages :
16
From page :
202
To page :
217
Abstract :
The paper presents a rigorous mathematical analysis of a deterministic model, which uses a standard incidence function, for the transmission dynamics of a communicable disease with an arbitrary number of distinct infectious stages. It is shown, using a linear Lyapunov function, that the model has a globally-asymptotically stable disease-free equilibrium whenever the associated reproduction threshold is less than unity. Further, the model has a unique endemic equilibrium when the threshold exceeds unity. The equilibrium is shown to be locally-asymptotically stable, for a special case, using a Krasnoselskii sub-linearity trick. Finally, a non-linear Lyapunov function is used to show the global asymptotic stability of the endemic equilibrium (for the special case). Numerical simulation results, using parameter values relevant to the transmission dynamics of influenza, are presented to illustrate some of the main theoretical results.
Keywords :
Reproduction number , Equilibria , lyapunov function , stability , infectious disease
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2010
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1560924
Link To Document :
بازگشت