Title of article :
Positive solutions for boundary value problems of second order difference equations and their computation
Author/Authors :
Ji، نويسنده , , Jun and Yang، نويسنده , , Bo، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2010
Pages :
7
From page :
409
To page :
415
Abstract :
We consider the following two classes of second order boundary value problems for difference equation: Δ ( r i − 1 Δ y i − 1 ) − b i y i + λ a i y i = 0 , 1 ⩽ i ⩽ n , y 0 − τ y 1 = y n + 1 − δ y n = 0 with δ , τ ∈ [ 0 , 1 ] and Δ ( r i − 1 Δ y i − 1 ) − b i y i + λ a i y i = 0 , 1 ⩽ i ⩽ n , y 0 = α y n , y n + 1 = β y 1 with α , β ∈ [ 0 , 1 ] . We establish the existence of positive solutions to both problems. A solver with linear computational complexity for almost tridiagonal linear systems is developed by exploring the special structure of linear system of equations. Based on fast solvers for linear systems, effective algorithms for the computation of positive solutions will be proposed.
Keywords :
Boundary value problem , Crout-like factorization algorithm , Positive solution , Power Method , Difference equation
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2010
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1561005
Link To Document :
بازگشت