Title of article :
A one side superlinear Ambrosetti–Prodi problem for the Dirichlet p-laplacian
Author/Authors :
Arias، نويسنده , , Margarita and Cuesta، نويسنده , , Mabel، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2010
Pages :
9
From page :
499
To page :
507
Abstract :
We study the solvability of the quasilinear elliptic problem of parameter s − Δ p u = g ( x , u ) + s φ ( x ) in Ω , u = 0 on ∂ Ω where Ω is a smooth bounded domain in R N , φ ⩾ 0 , g ( ⋅ , u ) / | u | p − 2 u lies for u < 0 below the first eigenvalue of the p-laplacian and g growths for u > 0 less than the lower Sobolev critical exponent p ∗ . We combine topological methods via upper and lower solutions and blow-up techniques to get a priori bounds to prove the following result of Ambrosetti–Prodi type: there exists s ∗ ⩽ s ∗ such that the problem possesses no solutions if s > s ∗ , it has at least one solution if s < s ∗ , and at least two solutions if s < s ∗ . We prove also that s ∗ = s ∗ in some cases.
Keywords :
Ambrosetti–Prodi type result , Superlinear problems , Blow-up method , p-Laplacian operator
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2010
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1561014
Link To Document :
بازگشت