Title of article :
The Laplacian energy of random graphs
Author/Authors :
Du، نويسنده , , Wenxue and Li، نويسنده , , Xueliang and Li، نويسنده , , Yiyang، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2010
Pages :
9
From page :
311
To page :
319
Abstract :
Gutman et al. introduced the concepts of energy E ( G ) and Laplacian energy E L ( G ) for a simple graph G, and furthermore, they proposed a conjecture that for every graph G, E ( G ) is not more than E L ( G ) . Unfortunately, the conjecture turns out to be incorrect since Liu et al. and Stevanović et al. constructed counterexamples. However, So et al. verified the conjecture for bipartite graphs. In the present paper, we obtain, for a random graph, the lower and upper bounds of the Laplacian energy, and show that the conjecture is true for almost all graphs.
Keywords :
Random graph , Limiting spectral distribution , Random matrices , eigenvalues , Graph energy , Laplacian energy , Empirical spectral distribution
Journal title :
Journal of Mathematical Analysis and Applications
Serial Year :
2010
Journal title :
Journal of Mathematical Analysis and Applications
Record number :
1561060
Link To Document :
بازگشت